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ABSTRACT: The “small molecule universe” (SMU), the set
of all synthetically feasible organic molecules of 500 Da
molecular weight or less, is estimated to contain over 1060

structures, making exhaustive searches for structures of interest
impractical. Here, we describe the construction of a
“representative universal library” spanning the SMU that
samples the full extent of feasible small molecule chemistries.
This library was generated using the newly developed
Algorithm for Chemical Space Exploration with Stochastic
Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of
the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist,
providing a near-infinite source of diverse novel compounds.

■ INTRODUCTION

Many grand challenges in science and biomedicine require
molecular and materials discovery.1−4 Yet, the fraction of
“chemical space” that has been explored over human history is
infinitesimalless than one part in 1050.5 The vast unexplored
molecular frontier suggests that there is reason for optimism in
the face of grand scientific tasks.
Current experimental and theoretical tools are poorly

matched to the scale and scope of the molecular discovery
undertaking. Enumerating all compounds or materials in the
vastness of molecular space is impossible, and assessing their
properties is even more unimaginable; even synthetically
accessible small organic compounds number over 1060.5

Further, current compound libraries are notably lacking in
diversity, meaning that much of available small molecule
chemistry has yet to be explored.5−7 Chemical libraries that
capture the much broader diversity of the entire chemical
universe promise to be a more empowering starting point for
molecular discovery.8−11

Synthetic methods for expanding the diversity of compound
collections, collectively known as diversity-oriented synthesis,
arose as a reaction to the relatively nondiverse libraries
generated by combinatorial synthesis and used in high-
throughput screening.3,8,12 Computational approaches to aid
in chemical space exploration can be very broadly classified into
molecular optimization techniques, those that aim to identify or
design compounds with optimal activity, and enumerative
techniques, which aim to explore the full extent of a given

chemical space. Optimization techniques include both search
techniques based on stochastic and evolutionary algorithm
frameworks,13−17 directed combinatorial library design,18 and
optimization within continuous alchemical spaces.19−21 Other
methods aim to construct molecules that have high similarity to
a set of known compounds as a basis for lead discovery.22,23

In contrast to these focused design techniques, others have
sought to enumerate all structures and to explore the full range
of chemistries available within a given chemical space.
Reymond has reported enumeration of all possible organic
compounds (within a set of rules for synthetic feasibility) of 13
or fewer heavy atoms.24−26 This “GDB13” database contains
nearly 1 billion compounds, most of which are not found in any
other compound library. Compound mining in GDB13 has
already led to successes in the drug discovery process.27,28

Oprea has also made considerable progress in quantifying
chemical topology, having enumerated all possible ring
topologies up to eight rings.6,29 Both of these studies yield
valuable information about the diversity of the small molecule
chemical space.
Although the number of compounds in the small molecule

universe (SMU) is far too great to be enumerated, we show
here that this astronomically large collection can be
characterized in a way similar to enumerative techniques but
that only requires consideration of a far smaller set of chemical
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structures. Well-established chemoinformatics techniques allow
the construction of “representative sublibraries”, maximally
diverse collections of compounds that contain as much diversity
as the parent library expressed in a much smaller number of
compounds.30−33 Combining these techniques with concepts
from chemical evolutionary algorithms, as described below,
allows the mapping of humongous chemical spaces such as the
SMU.
A schematic overview of the Algorithm for Chemical Space

Exploration with Stochastic Search (ACSESS) is shown in
Figure 1. By combining stochastic chemical structure mutations
with methods for maximizing molecular diversity, ACSESS

efficiently produces representative sublibraries of vast chemical
spaces. This procedure fundamentally differs from existing
chemical genetic algorithms; it is designed to explore rigorously
the full diversity available in targeted chemical spaces, including
astronomically large ones, such as the space of drug-like
molecules in the SMU (vide inf ra) or functional chemical
regions that contain molecules with specific desirable properties
(see Supporting Information). We term the compound libraries
thus generated “representative universal libraries” (RUL),
collections of compounds that represent the full extent of
chemical diversity within a much larger set of molecular
structures.

Figure 1. The ACSESS procedure allows the construction of a representative universal library in an arbitrary chemical space. (A) A library of initial
molecules is expanded using chemical mutations and crossover; compounds outside the target chemical space are discarded; and a maximally diverse
subset of the remaining molecules is selected. This process is repeated until the diversity of the set converges. (B) Chemical structure modifications,
which include: (1) addition or deletion of terminal atoms; (2) bond order modifications; (3) addition or deletion of in-chain atoms; (4) removal or
addition of cyclic bonds; and (5) modifications of atom type. (C) An example of a chemical space trajectory. The final compound occupies
unexplored chemical space in the SMU.
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“Chemical space” is defined here as an M-dimensional
Cartesian space in which compounds are located by a set of M
physiochemical and/or chemoinformatic descriptors. We focus
on chemical spaces defined by selected properties; the SMU,
for instance, contains all stable compounds of 500 Da or less. A
representative universal library contains chemical compounds
that span the full extent of accessible descriptor values in the M-
dimensional space. While the choice of the M descriptors and
diversity measures may depend on specific applications, this
approach remains generally applicable. Unlike previous
techniques for selecting a maximally diverse sublibrary,
ACSESS is unique in that the parent collection does not
need to be enumerated, allowing systematic exploration of
uncharted and astronomically large chemical spaces.

■ METHODS
The ACSESS Algorithm. To map an arbitrary chemical space,

ACSESS is seeded with a set of compounds; often, a very small library
suffices to initialize the algorithm (a library consisting of benzene and
cyclohexane, for example, was used to seed all work shown here). This
library is enlarged and diversified over multiple computational
generations. In each generation, the library is modified as follows
(Figure 1A): (1) The library is expanded by creating new structures
using “chemical mutations”; (2) compounds not in the chemical space
of interest are removed (including those assessed as not being
synthetically feasible or lacking the property of interest); and (3) the
size of the library is reduced by selecting a maximally diverse subset of
compounds. The qualitative features of the algorithm are discussed
below; a complete description is provided in the Supporting
Information.
Note that the ACSESS algorithm requires concrete choices of

chemical descriptor, diversity function, and target chemical space. As
described below, we have chosen descriptors, chemical space filters,
and diversity definitions that are relatively general, transferable, and
computationally efficient, allowing the construction of a large
compound library and exploration of a large compound space. For
more focused problems, other descriptors, diversity definitions, filters,
or even chemical mutation types can be used as “drop-in”
replacements for those described here.
Reproduction and Mutation. ACSESS begins a generation by

generating novel chemical structures from the previous generation.
First, a set of new compounds is produced by “crossover” mutation
(Scheme S1), where two “parent” compounds are copied from the
library, and each is split into two fragments by cutting a random acyclic
bond. Two of the resulting fragments, one from each parent, are then
bonded together, and the resulting structure is added back into the
library.
After generating crossover mutants, further novel compounds are

generated by copying random individual structures from the existing
library, stochastically modifying them, and adding the new, modified
structures to the library. These “chemical mutations”, as shown in
Figure 1B, consist of addition/removal of an atom, either a terminal
atom (1) or “within” an existing bond (3); creation/removal of a ring
bond (4); modification of atom type (5, for example, changing a
carbon atom to a nitrogen atom); and modification of bond order (2).
The mutation process and the probabilities of each mutation type are
shown in Scheme S2. Because the descriptor set used in this study
depends only on molecular connectivity (vide inf ra), stereochemical
information was not tracked in these calculations. However, for
descriptor sets or property calculations that depend upon absolute or
relative configuration, stereochemical mutations can be included as
well. For such systems, configurations may be inverted, and cis−trans
diastereomers may be isomerized.
Filters. After new molecular structures are generated using the

above chemical mutations, those that fall outside the chemical space of
interest must be discarded. In this study, we focus specifically on
stable, synthetically accessible drug-like molecules in the SMU.
Compounds were therefore screened using a combination of chemical

subgroup filters (eliminating compounds that contain reactive or
hydrolytically labile moieties, such as strained allenes, cumulenes,
hemiacetals, aminals, orthesters, etc.), steric strain filters based on
generated 3D conformations (for example, removing compounds with
nontetrahedral sp3 carbons), and simple physiochemical filters (XlogP,
Lipinski and Veber rules, among others).24 A complete list of filters is
given in the Supporting Information. Because these calculations did
not track stereochemical information, the software used to generate
3D geometries was used to generate any energetically reasonable
configuration for each structure. More robust ab initio stability filters
would be an appealing future alternative to the heuristic ones
employed here.34

Maximally Diverse Subset Selection. At the final stage of each
ACSESS generation, only a maximally diverse subset of the remaining
molecular structures is retained; all other compounds are removed
from the library. These structures are used to seed the next generation
of the ACSESS procedure. Because the new library is chosen from
both the new “child” compounds from the current generation and the
“parent” compounds from the previous generation, the diversity of the
library must necessarily improve or at least remain constant after each
generation.

Many quantitative definitions of diversity exist, as do methods for
selecting small maximally diverse libraries from larger libraries.30 One
common definition of “diversity” is as the average nearest-neighbor
chemical space distance within a set of compounds. Given this
definition of diversity, a maximally diverse collection can be selected
using the “maximin” algorithm, which creates a representative subset
by choosing compounds from a larger library one-by-one, such that
each new structure has the largest minimum distance to existing
compounds in the subset.32

A cell-based definition of diversity can be used if the principal
components of the chemical space are known.35 For cell diversity,
chemical space is divided into a discrete, multidimensional grid, and
diversity is then simply defined as the number of cells that contain at
least one chemical structure. A maximally diverse set of compounds
can be selected simply by choosing a single structure from each cell.

Chemical Space Descriptors. Any diversity analysis is highly
dependent on the descriptor set chosen, which defines the chemical
space coordinates of the structures. A large number of chemical
descriptor sets exist,36 ranging from simple counts of topological
properties37 to measures of 3D shape.38

For the mapping presented here, chemical space coordinates were
calculated using Moreau−Broto autocorrelation descriptors.39 This
well-established set of descriptors encodes structural information from
an arbitrary chemical structure into a fixed-length vector40 and has
been successful in diverse tasks, such as defining biologically relevant
similarities in large compound sets41 and correlating structural
diversity with biological activity.42 Autocorrelation descriptors describe
topological correlations between atomic properties on a molecule:
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dij is the number of bonds separating atoms i and j, and pi is the value
of atomic property p on atom i. Here, the properties p include the
atomic number, Gasteiger−Marsili partial charge,43 atomic polar-
izability,44 topological steric index,45 and unity (i.e., pi = 1 for all i);
values of d from 0 to 7 were used, providing a 40D chemical space.
Note that these descriptors are based solely on molecular topology and
do not reflect stereochemistry or 3D structure.

Principal Component Analysis of the SMU. ACSESS was used
to construct a small, 2000-compound representative universal library
(RUL), employing the maximin method to select maximally diverse
subsets (see SI). The 40 autocorrelation vectors of these 2000
molecules were mean centered and normalized to have unit variance,
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and principal component analysis (PCA) was performed. Loadings for
the first 10 principal components of the SMU are shown in Table S1.
Construction of a Representative Universal Library of the

SMU. Next, cell-based diversity was used to construct a large,
synthetically optimized representative universal library of the small
molecule universe (SMU-RUL). A partitioning scheme was developed
based on the largest 10 principal components (PCs) of the SMU.
These PCs collectively account for 98.5% of the SMU’s chemical space
variance. Each PC was then partitioned into bins, with the number of
bins proportional to each PC’s standard deviation, yielding a 20 × 15
× 12 × 11 × 9 × 8 × 8 × 6 × 6 × 4 grid that partitions the SMU
chemical space into 3.3 × 109 cells. ACSESS was then used to
construct the 8.9 × 106 structure SMU-RUL, with maximally diverse
subsets selected by choosing one compound per grid cell. In cases
where more than one compound was present in a cell, the compound
with the highest estimated synthetic accessibility score was selected.
Synthetic Accessibility Scores. The SAScore algorithm estimates

a structure’s synthetic accessibility based on both its topological
complexity and how frequently its substructures appear in large
chemical databases.46 SAScores reported here are based on a
substructure analysis of the full ZINC database, and higher SAScores
indicate a more facile synthesis. The distribution of SAScores for
compounds in the PubChem library is shown in Figure 2E.
Software. ACSESS was implemented in Python 2.7 using

OpenEye chemoinformatics toolkits.47 For screening of 3D geo-
metries, conformers were generated using the OpenEye OMEGA
program.48

■ RESULTS

Proof of Principle: the GDB13 Chemical Space. The
GDB13 database enumerates all possible compounds of 13
heavy atoms or fewer (within a set of synthetic criteria used as
inspiration for the present work) and is currently the largest
available database of chemical structures.24 We first used
GDB13 to test the ability of the ACSESS method to capture the
diversity of a large molecular ensemble. An RUL of 10 000
compounds in GDB13 (GDB13-RUL) was constructed.
Compounds were filtered for synthetic feasibility using the
same criteria as in GDB13; the diversity of the set converged
after 1000 generations. The 10 000-member GDB13-RUL was
as diverse as the fully enumerated GDB13 library but required a
factor of 104 fewer compounds to be processed computationally
than the GDB13 enumeration. Additionally, PCA (and other

mappings) of the GDB13-RUL produced diversity metrics
similar to those of the fully enumerated library.
These results indicate two important properties of the

ACSESS method. First, at convergence of the diversity
measure, the RUL captured the full diversity of its parent
space. Second, ACSESS generated the GDB13 RUL by
enumerating far fewer compounds.

A Representative Library of the SMU. ACSESS was
employed to build a representative library of the entire SMU-
RUL consisting of 8.9 × 106 structures (database S1), with local
optimization for synthetic accessibility. Chemical structures
were restricted to 150−500 Da with estimated log P < 7.0 and
were filtered for reactivity, stability, and drug-likeness. Chemical
space coordinates were computed using Moreau−Broto
autocorrelation descriptors.36 A total of 3.6 × 109 structures
were screened.
Structures in the SMU-RUL represent a widely spaced mesh

over the complete SMU chemical space as defined above. It is
important to note, however, that the specific set of compounds
in the SMU-RUL is not unique. Instead, each SMU-RUL
compound indicates the existence of minimally one, and, on
average, ∼1053 related structures (given the estimate of 1060

possible SMU structures)4 in a particular region of chemical
space. Convergence of the diversity measure, while not
indicating that a global optimum has been reached, shows
that we have obtained a set of structures that is representative
of the accessible chemical space.

Comparison to Existing Databases. The chemical space
coverage of the SMU-RUL was compared to that of three
existing databases: PubChem, a database of >3 × 107 pure
chemical compounds;49 ZINC natural products, a database of 2
× 105 natural products and metabolites relevant to drug
discovery; and ZINC drugs, a database of >7000 approved
drugs.50 For comparison to the SMU-RUL, databases were
filtered according to drug-likeness and atom content using a
subset of the SMU-RUL filters (see SI).
Although 99.9% of the generated SMU-RUL structures obey

Lipinski’s rules for drug-likeness,51 only 11 000 are present in
the PubChem database. The scaffolds in the SMU-RUL
(defined as the set of atoms that are in or link the molecule’s
ring systems)29,49 are also highly novel. Of the 5.1 × 106 unique

Figure 2. Comparison to existing libraries. The SMU-RUL (black), ZINC natural product library (green), ZINC drug library (orange), and drug-like
compounds in PubChem (purple) are shown. (A) Compound locations along the first two principal components of the SMU-RUL library. (B−I)
Histograms of physiochemical properties for the four libraries; y-axes correspond to normalized compound counts within each library. The
properties include: (B) estimated log P (XLogP);54 (C) molecular weight (MW); (D) topologically estimated polar surface area (TPSA);55 (E)
SAScore;46 (F,G) number of hydrogen-bond donors and acceptors; (H) ratio of noncarbon heavy atoms to carbon atoms; and (I) number of
rotatable bonds. Compared to the PubChem database, molecules in the SMU-RUL are, on average, more polar and have a larger molecular weight.
Lower synthetic accessibility scores (E) for SMU-RUL compounds are expected because of their novelty and dissimilarity to known compounds.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja401184g | J. Am. Chem. Soc. 2013, 135, 7296−73037299



scaffold topologies in the SMU-RUL, only 23 000 are found
among the 3.2 × 106 scaffold topologies in the PubChem
database. Interestingly, the SMU-RUL also contains two known
drugs, acetanilide and phenytoin.
Figure 2A shows the chemical space occupied by SMU-RUL

compounds along its first two principal components as well as
the positions of compounds from the ZINC and PubChem
databases. Even in this 2D projection of the 40-dimensional
chemical space, the SMU-RUL covers a much larger region of
chemical space than existing chemical libraries. Figure 2B−I
shows the distribution of eight physiochemical properties in the
four sample libraries. Most strikingly, the SMU-RUL, on the
whole, contains heavier, more polar and synthetically more
challenging members (given current methodologies) than
existing compound libraries (Figure 2B−G).
The property distributions in Figure 2 show that much of the

available SMU diversity is concentrated at higher molecular
weights and more polar structures than currently known
compounds. This is not surprising, given the autocorrelation
descriptors used to describe diversity here; larger compounds
can support a larger range of chemical functions, allowing a
wider range of descriptor values to be explored. The relatively
low synthetic accessibility scores (SAScores) of the SMU-RUL
structures are also expected. These scores indicate that in many
regions of chemical space there were few compounds with
similar substructure to known compounds.
Self-Organizing Map of the SMU. A self-organizing map

(SOM) was constructed from the SMU-RUL to visualize the
high-dimensional SMU chemical space (Figure 3). SOMs have
a rich history in chemical diversity analyses.52 An SOM consists
of a lattice of “neurons”, each associated with a chemical space
coordinate.22,23 The SOM is randomly presented with “cue”
coordinates from the training set (here, the SMU-RUL). For
each cue, the neuron with coordinates closest to the cue is said
to “fire,” and it and its neighbors’ coordinates are adjusted in
the direction of the cue. Iteration of this procedure creates a
low-dimensional representation of the high-dimensional
chemical space.
A toroidal 300 × 300 SOM was trained using the

autocorrelation chemical space coordinates of the SMU-RUL.
Each SMU-RUL compound was then assigned to its closest
neuron. The compounds were spread relatively evenly
throughout the map, with an average of 98.5 ± 25.3 (and at
least 16) chemical structures assigned to each neuron. A small
region of the map (region EI in Figure 3B) corresponds to
relatively low molecular weight structures with 15−20 heavy
atoms, while others correspond to higher molecular weights
nearer to the 500 Da limit. Figure 3D shows well-defined
regions containing either large, fused ring systems or simpler
monocyclic and fused bicyclic structures. Variations of other
topological and physiochemical properties over the map are
shown in Figure 3C−F and Figure S3A.
The autocorrelation vectors of all PubChem library

compounds were computed and assigned to neurons on the
SOM (Figure 3A). The PubChem compounds were concen-
trated in a very restricted area compared to the SMU-RUL,
with 98% of PubChem compounds assigned to 2% of the
neurons. The most significant PubChem compound cluster is
centered on region EI and is characterized by compounds with
low molecular weights and few rings. The cluster can be further
divided into two regions: one corresponding to rigid structures
without rotatable bonds and the other to more flexible
molecules. A smaller cluster in region DIV corresponds to

compounds with higher molecular weights and more complex
scaffolds.
Large regions of chemical space populated by SMU-RUL

structures are unrepresented in PubChem (white spaces in
Figure 3A). Note that the inverse is not true; a SOM
constructed using compounds from both PubChem and the
SMU-RUL shows that SMU-RUL structures occupy all of the
space occupied by PubChem compounds (Figure S3B). The
unexplored regions of chemical space were, like the SMU-RUL
in general, almost entirely drug-like based on Lipinski’s rules.
Examples of SMU-RUL structures from unexplored portions of
chemical space (Chart 1 and Figure S4) include complex ring
structures (AIII, BVI), many simple ring systems (AV), bridged
macrocycles (CIII), and high heteroatom content compounds
(CI−CII).

■ CONCLUSIONS
The stochastic exploration described here is a computationally
efficient tool for accessing the astronomical number of feasible
organic structures. As a comparison of stochastic and
enumerative approaches, all 970 × 106 compounds from the

Figure 3. Map of the small molecule universe. A 300 × 300 toroidal
SOM was created using normalized autocorrelation descriptors of
SMU-RUL compounds. For clarity, the map is divided into 36 labeled
sections (AI, BII, etc.), each containing a 50 × 50 grid of neurons. (A)
Number of PubChem compounds assigned to a neuron; white
indicates neurons which are unoccupied by any PubChem compounds
(84% of total). The PubChem compounds are highly clustered to a
relatively small region of chemical space; 98% are assigned to only 2%
of the neurons. The black circle in region EI encompasses the
positions of all GDB13 compounds. (B−D) Molecular properties;
each neuron is colored by the median value of its SMU-RUL
compounds.
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enumerated GDB13 library were assigned to the SMU-RUL
SOM. In the low-molecular weight portion of the map, 98% of
GDB13 compounds were assigned to just 10 neurons, and the
GDB13 compounds overall occupy a total of only 61 adjacent
neurons, 0.07% of the total (Figure 3A). The combinatorial
explosion of new molecules available at higher molecular
weights is simply not accessible in the smaller chemical spaces
amenable to enumeration.
Importantly, in our stochastic exploration, large gaps were

observed in the currently known compound collections. There
has never been an attempt made to explore the full range of
chemical diversity, either by nature or by man. Nature uses
readily available building blocks and biosynthetic tools to
develop structural motifs and arguably has employed repetitive
patterns and quantum leaps in molecular weight (biopolymers)

to address the diversity intense aspects of data storage, immune
defense, scaffolding, etc. Laboratory synthesis relies on a
nucleation-based building block approach, using iterative bond
formations and a limited pool of available reagents. In the
absence of obvious incentives otherwise, laboratory synthesis
thus emphasizes simplicity and uses small functional group-
specific tools to carve out niches around known biologically
active scaffolds.
The ACSESS algorithm makes two important contributions

to chemical space exploration, both of which are immediately
available for further experimentation. First, the gaps identified
in the known chemical universe may now be explored
systematically. Second, ACSESS allows the mining of chemical
libraries that do not yet exist, providing a near-infinite source of
novel compounds. For instance, we have used ACSESS to

Chart 1. SMU-RUL Compounds from Unexplored Chemical Spacea

aEach compound shown here was selected from a SOM map neuron unoccupied by any PubChem compounds and was among the most
synthetically accessible compounds assigned to the neuron. Letters/numerals refer to the regions shown in Figure 3. The stereochemical assignments
shown reflect the generated 3D conformations, which are shown as ball-and-stick models in the SI.
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search a chemical space of unprecedented size to create a
library of compounds with high similarity to bretazenil, a
benzodiazepine anxiolytic drug discovered in 1988. Similarity
here was defined using the Tanimoto coefficient of the
PubChem-format fingerprints.53 The resulting library repre-
sents both a universal library of structural isomers of the target
drug and a collection of novel, unpatented candidates for future
development. Because of ACSESS’s efficiency, more computa-
tionally intensive metrics than structural similarity can be
employed, affording opportunities for molecular discovery in
fields well beyond biology and medicine.
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